JOURNAL OF COMPUTATIONAL PHYSICS 4, 67-96 (1969)

A Method for Calculating Frontal Motion
I. One Dimensional Tests

Z. S. ALTERMAN! AND E. ISAACSON

Courant Institite of Mathematical Sciences,
New York University, New York, New York 10012?

Received July 19, 1968

... ABSTRACT

A method is developed for treating the motion of a cold front in a simplified model
having a single space dimension. With this method it is not necessary to follow the
“particles™ at the front, hence the programming of the numerical scheme is simpler than
in previous methods. Calculations of “equilibrium” state and motion of the front due
to inflow of cold air at the north proved numerically stable through prolonged periods
both for a single layer model and for a two layer model. The “equilibrium” solutions
for both models are similar. The time dependent solutions for these models show
qualitative agreement in the motion of the front and in the velocity distribution.
However, the solutions for the two models differ quantitively.

INTRODUCTION

This paper develops a simple method for calculating the motion of a cold front
in a single space dimension. The» new feature of the method involves initially
“inserting” a very shallow layer of cold air over that portion of the ground which
is covered by warm air, With this technique it is not necessary, as it was in a previous
paper by Kasahara, Isaacson and Stoker ([3], [4]), to devise a special scheme to
follow the “‘particles” at the front-hence the programming of the calculations is
indeed simpler. Furthermore, it may prove to be possible to extend the method to
treat the full two-dimensional model. In this event it should be possibie to compute
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68 ALTERMAN AND ISAACSON

well into the occlusion phase more readily than it could be done by the method
of [3]. (In the one-dimensional model, the Coriolis force remains constant, hence
the results may only have physical significance for a short time-—the principal
reason for making these calculations is to verify that we can safely avoid following
the frontal particles. In Section 7, we give another application of this method by
computing the river flood that results from breaking a dam.)

The initial state of the dynamical system consists of a cold wedge of air at the
ground with a warm layer over it. Fig. 1 shows the wedge pointing from north to
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Fic. 1. Vertical cross section of the wedge of cold air.

south (in the negative y-direction). Initially the velocity in both layers is constant
and in the direction of the x-axis (to be thought of as the eastward direction). To
make the problem one dimensional, we neglect the x-dependence of all quantities
involved. The fluid in each layer is assumed to be a perfect incompressible fluid
with constant density subject to gravity.

1. EQUATIONS

Upon following the notation of [3] neglecting x-dependence, and adding resist-
ance terms R and R’ the equations of motion become

ut+wy:—g[—';’;'-h;+(1—PT')hy]—fu+R 1)
v; + v'vy = —gh, — fu' + R’ 2)
and the equations of continuity are
hy + vhy + hv, = 0 €))
W —hs+ vl — by + @ —hov,=0. “4)

In the lower layer (cold air) p represents the density, / the height of the upper
surface of the layer, and u and v represent eastward and northward velocity
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components. The corresponding quantities in the upper layer are distinguished with
primes. The x-components of velocity # and u’ are assumed to be constants. R and
R’ are the y-components of the friction acting on the two layers. We shall solve
these equations with appropriate initial and boundary conditions. We first consider
the simpler set of equations obtained by an approximate treatment that cuts the
number of dependent variables in half by simply neglecting the dynamics of the
perturbations in the warm air layer. (On this assumption, numerical solutions for
a two space dimensional model have been given in [3]). Hence, for a single laver
model, in one space dimension and with the inclusion of a frictional resistance term,
we have

7

vt+vvy+g(1———‘;—):hv—_—f(;%_u',u)—}—R {5)
hy + hv, - vh, = 0. %)

The friction term in Egs. (1), (2) and (5) is taken proportional to the square of
the y-component of the velocity, A more detailed description of the friction term
follows later.

The system of partial differential equations (1)—(4) has an exact solution, corre-
sponding to a stationary front

v =20 €))
hy = — gu’ (8)
v=20 %)
_ I £y
hy = g(l — p'lp) ( p " u) {10

The stationary solution for Eqgs. (5) and (6) is given by (9) and (10) alone. Egs. (8)
and (10) show that the slope of the surface of both the warm and the cold air is
constant in this stationary solution. This solution corresponds to the configuration
of a wedge of cold air in a region which does not include the intersection of the
wedge surface with the earth—i.e. the front. As pointed out in {3] a special numerical
difficulty arises from the fact that the front is a free boundary along which the
differential equations are in a sense singolar. The main purpose of this study is
to find a numerical method, for determining the motion of the front, without the
labor of foliowing the front from one time step to another. To this end, wherever
at time ¢ = 0 there is no cold air on the ground, we insert a quite thin layer of cold
air. Hopefully this device will be useful in the numerical solution of the front
problem for two space dimensions.
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2. INITIAL : CONDITIONS -
. At the time ¢ = 0: the front of the cold 'aii layer is located at y = y, ; within
the region 0 << y <C ¥ the surface of the layer:-has constant slope for y, < y < Y
and is at a given constant level for 0 < y <.y, . Fig. 2 shows the shallow layer of
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Fic, 2. Vertical cross section of the two air layers.

cold air in front of the wedge. By choosing the slope of the wedge to be equal to the
slope in the stationary solution, the initial conditions for Eqgs. (1)-(4) become

=0 , an
W o=h(y—y)+h (12)
f i ' < <
e (U — <Y<Y
b — g(l —P/P) (u u) 4 Y 13
y f ( )
— = 0<y <y,
g
b =0 (14)
h= hy(y — Yo + ke (15)
f p’ 9 < <
T 7 j N\ - ¢~ = Y
b= T v ) ey (16)
0 0<y <y

here 4" = ' — h denotes the depth-of the warm air above the surface of the cold
air and 7, and &, are constants having the values of #” and A respectivelyaty = y, .
The initial conditions for Eqs. (5) and (6) are given by (14)-(16) alone.
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These initial conditions do not in general constitute a steady state solution. For
example, on neglecting resistance, we find an initial acceleration in the shalow
layer of cold air. That is, in this layer at the initial time,

’

v, :f(—pp— W — u) = const. %% 0 for 0y <y, an

(unless (p'/p)u’ = u).

3. BOUNDARY CONDITIONS

The point y = 0 is assumed to be far .enough from the cold front so that
boundary conditions here do not-influence the front. The only condition to be
satisfied, is that no additional disturbance should propagate from y = 0 into
the region 0 << y < Y. At y = Y conditions can be prescribed in a variety of
ways, depending on the physical conditions assumed to hold there. We considered
the following cases:

{a) u(Y, 1) and A(Y, t) determined by extrapolation from y < V.
(b) Same as in (a), if (¥, t + 4r) = 0; otherwise set (¥, ¢ -+ dr) = 0.

(¢) Inflow of cold air into the wedge either periodically varying in time (with
period T'), or increasing to a constant flow Velo'city,

2wt .
oY, 1) =V, [co; - 1] t>0 (18)
or
2t
Joah <Lt <
wrn— Vol -] o<e<ar (19)
-2V, i<

4. THE RESISTANCE TERM

The resistance terms in Eqgs. (1), (2) and (5) are similar to the hydraulic resistance
for flow in a channel. They account mainly for the slowing down of the flow in the
shallow layer of cold air to the south of the cold front. In Eq. (1), for the cold air, we
take '
vlv]

and in Eq. (2) for the warm air
o aata

PR @
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In the single layer case, Egs. (5) and (6), when A" and ¢’ do not occur explicitly,
k" in Eq. (20) is absorbed into the coefficient, and the resistance term in Eq. (5) is
written as

(22)

The right hand side of Eq. (22) is the same as the Chézy formula for the hydraulic
resistance for flow in a channel [7]. Mintz [5] assumes the horizontal frictional
force to depend on the vertical stress, and takes it specifically at the surface of the
earth to be proportional to » | v |, as did Phillips [6]. Now the y-component of the
three dimensional equations of motion includes the term (1/p)(é7,/0p). Here =, is
the y-component of the frictional stress acting across a horizontal surface and p
stands for pressure. The factor 1/h in (22) enters through an approximation to the
p-derivative, since the hydrostatic assumption implies that dp, the change in
pressure from the top to the bottom of the cold air layer, is proportional to A.

5. DIMENSIONLESS VARIABLES

The following new dimensionless variables are introduced in the case of the
two layered model, Egs. (1)-(4), (11)-(16) and (20)-(21)

T=1t/dt n=ylds A= Adi/ds
A 23)
d=M =N h=2Ngh K = Ngh'

At and ds denote units for time and length with ratio A, a suitably determined
constant. Also we define the following new parameters:

G — fudth G — fuldtr
24
P = adsg® P =goP o=p/p.

With the aid of (23) and (24), Egs. (1)-(4) could be written in dimensionless form.
But we find it convenient to further simplify the equations. We now drop the
circumflex and use v to represent the dimensionless velocity, 4, in the lower layer,
in addition we introduce new variables w, ¢ and i by

v=1>% w=49% d=2vk =2k (25)
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Equations (1)-(4) then become
viv]

v, + 0, + doi, + §bd, = —G + 16P —5—5 R {26)
ety + B+ b, = G 167 en
¢, + vd, + v, =0 (28)
g, -+ wib, + w, = 0. {29)
The initial conditions are rewritten as
w =0
= 2[h(n — ) + B2
v=20 (30)

¢ = z[ﬁn(n - Iric) + ;20]1/2
att =0,0<n < Y/ds.
The dimensionless variables in the case of the equations for a single layer, are
defined in a slightly different fashion. r, %, A and 4 are defined as in Eq. (23). 4, G, P
will now be defined in the following way

h=g (1 — PT') A2 31)
G = fAn\ (—PP— w — u) (32)
P = adiig (1 — —f;'—)‘ (33)

By introducing ¢ = 24/% and omitting the circumflex symbols, i.e. setting
v = 4, Egs. (5) and (6) for the single layer become

viv]

o v, A, = G+ 4P T (34)
¢, + 3dv, + vé, = 0. (35)
The initial conditions (14)-(16) become here
v=20
(L) = (L) + 6t —m) e << ids (36)
b = ¢ 0< <.,

where 3, = y,/4s and ¢, = 2AVgh, .
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6. DIFFERENCE EQUATIONS

“The finite difference scheme chosen is similar to the scheme used in [3]. The grid
intervals in the y direction are chosen to be equal to 4s, the time-increments
equal 4z, so that. the increments Az, and A7 in 4 and 7 are unity. (The finite
difference scheme is accurate to terms of second order and we will retain the symbol
A7 in some of the subsequent formulae in order to make this fact transparent.)

The difference equations are obtained by first replacing time derivatives by
first order centered differences, e.g.

[U(ﬂﬂ' + AT) - U(”?’ T)]/AT = U(”’I, T+ 1) — 0(779 T) = 01(77’ T+ %)’ (37)

a formula which is accurate to second order in Ar. All space derivatives occur
multiplied by one of the dependent variables. The space derivatives are to be
approximated at time 7 + % and the variable factor is replaced by the arithmetic
mean of its values at  and 4+ 1. With the notation

oy = $o(y, 7+ 1) + vy, )], (3%
the difference equations for (26)—(29) may be derived by first setting
v(n, 7 + 47)
= oy, 7) — GAr + 16P (v [

|v|

¢2¢2
+30 B (ot Jar) + 36 (g, 4]

]T+1~ . A7 — 4~ [(v} —g—z— (17, T - —;—AT)

w(n, v + A7)
= w(ny, T) — G'AT + 16P'< > [ Jﬁ:t/,L] dr — A~ [(w} (77, T4 = A'r)
3 B (5 A7) + 5 < %;’73 (m. 7+ 3 4r)]

é(n, 7 + 47) |

= ¢(n, ) — 4r [<v>—§;‘;(n, v 42 ) +%<¢>S—z(n,¢ +547)]
Sy, v + A7)

=, ) — e [y G (7 5 A1) + 5 <> B (w4 g 4e)]
" (39

The quantities that are to be evaluated at (g, 7 + $47), are expressed in terms of
their Taylor series expansions about (3, 7) up to terms of first order in 47 which
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ensures that (39) is correct to second order in A+. The first order time derivatives
occurring in these Taylor series are then replaced by space derivatives through the
use of the differential equations. All space derivatives are then approximated by
centered differences. The result is a set of four linear equations in v, w, ¢ and ¢ at

the point % and at the time 7 -+ 4, namely
| Fy¢m+t 4 For+l = F,
Fpb1 + Fawr+! = F,
For#t o+ Fypm + Fbr#t = Fy,
F11W1'+1 + F12q5’r+1 + F13¢7+1 - Flé
here the coefficients are

Fi=l4hras  F =g

Fy _ ¢ — %vr¢;+1/2 _ %d)TU:‘)-{-—l/z

{40)
“n
(42}

{43)

F4 =14 gwr+/2 F, = %glf;“/z
1 [ o]yt

— L — p7THL/2 LRGN
Fy=1+50 8P[¢2¢2]
Fo=i498 = joyan

1 | v]qrii/e 1 1

— 7 — e pTH1/2 Lo . _— OFY /1 o VF R C TR W1

Fo=v (1 5 Uyt 4 8P Lﬁztﬁz] ) G—3 o+ i P+
1 * w % T+1/2

— L oortife r[ Wi
Fy=1+5w] 8P [¢2¢2]
F, = %¢;+1/2 F,= %‘M,H/z

| wi

‘ 1 ) L2 1 . 1 , )
FM = W (1 —_— z w;'+1/2 + 8P [__x__] ) — E s[/'rzp;'.i/z . Z ¢7¢:)+1/2 — G

P

(44)

‘ Equations (40)-(43) arc then solved, and the functions at the time = -+ 1 are
obtained explicitly in terms of the known values of the functions at the time .
The finite difference approximations to the equations for the single layer model

are obtained in a similar fashion.
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7. WAVES IN SLOPING CHANNELS

In order to check the numerical procedure for solving the frontal motion problem,
we obtained the solution of a simple problem governed formally by the same equa-
tions and treated by a different method in [2].

The equations of motion and continuity for unsteady nonlinear waves in a
sloping channel, with hydraulic resistance are

kv[vl

vy + ov, - ghy, + 45)

by - vhy + ho, =0 (46)

with depth A, particle velocity v, distance along the channel y, coefficient of
resistance k,* and slope of the channel —m. Dressler [1] considered the problem
without friction and Whitham [8] gave an expansion for the solution without slope.

As an illustrative example, we consider the specific unsteady reservoir discharge
problem with initial conditions shown in Fig. 3. The triangular wedge of water
in the reservoir is initially at rest (v = 0) with a horizontal surface and depth H at
the y-coordinate where the dam is located. The dam is removed at time # = 0.

H
v. h
GLOPE -m

—

J

Frc. 3. The initial state of a reservoir on sloping ground.

This is the dam break problem for the case of no water in front of the dam. Its
solution will be obtained numerically as a limiting case of the dam break problem
with water in front of the dam. We first treated cases where the slope is zero and
later solved a problem with a sloping channel.

The difference equations which we had described for solving equations (5) and (6)
are now applied to Egs. (45) and (46) with dy = As = 5000 ft, A = d¢/ds =
0024 sec/ft, k = 0, m = 0, and g = 32.15 ft/sec?. Fig. 4 shows the well known
solution (e.g. see [7]) in the case of a small horizontal layer of water in front of the
suddenly removed dam. In this and the subsequent calculations, the dam is placed
at y = 100 units and its location is indicated by the arrowhead (one unit is 10%
feet). The initial depth of water in the reservoir is H = 250 feet, the depth of water

3 Note that we have used the symbol « for the resistance coefficient for air.
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Fic. 4. Height 4 and velocity v of water, 50 minutes after dam break. 4, = 50 feet.

in front of the dam is 4, = 50 feet. Fig. 4 shows the distribution of / and v after 50
minutes. Fig. 5 shows the solution after 50 minutes for the problem where initially
H — h, = 200 feet, but A, = 10 feet. The hydraulic jump (bore}) at the front of the
moving water is, as expected, smaller than in Fig. 4. Theoretically, the discontinuity
in / should decrease to zero for A, decreasing to zero. However, it is found experi-
mentally that for a given grid spacing 4y, the jump in & does not decrease below 2
certain value A4, . In other words, for a given grid size, the numerical results are
significant only if #, is not too small.

In order to overcome this difficulty, we simply treated the region in which i1 < /4,
as one in which the velocity is set equal to what it is at the place where & = 7,
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Fic. 5. Height % and velocity » of water, 50 minutes after dam break. 4, = 10 feet.

(a simple extrapolation). Fig. 6 shows the solution after 60 minutes when initially
H — h, = 200 ft and h, — 10-¢ ft. The limiting depth for extrapolation of velocity
was hy, = .01H = 2 ft. The solution shown in Fig. 6 agrees with the expected
result (e.g. see [7]) for flow into a dry channel.

The same method of solution was then applied while taking hydraulic resistance
into account. Fig. 7 shows the result for a resistence coefficient of & = 0.0108,
h, = 11t and H, h,, , A unchanged from the values used in the example for Fig. 6.
The depth A( y, ¢) has now the shape calculated and drawn by Whitham [8] for
the tongue of the progressing fluid.

The numerical results were checked by doing many calculations of the same prob-
lem for vatrying values of Ay with and without changing the value of A. The
dependence on the specific finite difference scheme was also checked by using a
simple first order scheme for several space intervals, 4y, near the front of the wave.
The results did not change appreciably. :
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t=60 min
20

180~

S
!

HEIGHT IN  FEET
©
S
I

60}~ -100

H # 1 1

) 1
0 30 60 0 P24 50
DISTANCE  IN UNITS OF I* FEET

- F1G. 6. Height & and velocity v of water, 60 minutes after dam break. No water in front
of dam initially.

In order to avoid the spurious oscillations which tend to appear at discontinuities,
simple. space averaging was performed every few time steps. That is, the velocity
and height were smoothed by adding respectively to o y, ¢) and to #{ y, ¢} the
terms ‘

Faslo(y + dy, ) — 20(y, t) + v(y — 4y, )]
and ‘ : ; 41
Fal(y + Ay, 1) — 2h(y, 1) + Wy — 4y, )]

After numerical experimentation we selected fgis = .1. The use of (47) after every
forty time steps made it possible to proceed with the computation for a long time,
even though somewhat smaller oscillations still developed near the bore. But, using
(47) after every ten steps or more often, produced quite smooth results. In all of our
calculations for figures 4-8 the smoothing formula was used after every 8 to 40
fime steps.
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"Fic. 7. Effect of hydraulic resistance (x = —0.01) on height 4 and velocity v of water,
80 minutes after dam break. No water in front of the dam initially.

We finally treated a case where the bottom had a gentle slope. Fig. 8 shows the
solution in a sloping channel at the time ¢ = 70 min. The slope is m = 0.0001,
h, = 10-¢ft, and the depth H — h, = 200 ft just above the dam, initially. The
program worked without any further change. The depth of water decreases linearly
behind the dam at the initial instant. The upper portion of the reservoir still shows
this effect after 70 minutes since the rarefaction wave hasn’t reached the upstream
end of the pool.

8. RESULTS FOR THE SINGLE LAYER MODEL OF FRONTAL MOTION
After experimenting with the numerical scheme on the dam break problem,

we then applied the same method to the single layer model of frontal motion.
The following values of the parameters were chosen in the cases we next describe:
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Fic. 8. 70 minutes after dam break in a sloping channel. % is the depth of water above the
sloping ground.

Ads = 510 ft
At = 120 sec
A = 0024 sec/ft
Y = 3004s
v, = 2004s
g = 32.1521 ft/sec?
f=10"%sect
u = 10 ft/sec
Py =50 ft/sec
p

g (1 — —%'—) — 0.6 ft/sec?

As explained earlier we used the smoothing formulae (47) regularly (with a fixed
frequency in each case ranging from 8-40 time steps).

581/4/1-6
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a. “STATIONARY’’ STATE

We first computed with the initial conditions (14)-(16) and the boundary condi-
tion of no inflow of cold air from the north. These produced stable, essentially
stationary results for various values of &, , 10-8 << A, <C 1 (in feet) and for various
values of the resistance coefficient —102 < o < 0. By “essentially stationary” we
mean that the variation 6f h(y, t)in time is negligible. That is, for 0 <C ¢ <{ 1000 min,
we found the phase lag p(p, t), defined by h(y, t) = h(y +. p(¥, 1), 0), satisfied

I p(p, )< 34s  for |y— y,| < 104s,
while :
| p(y, )] <'ds for | y— y,| > 104s
From Eq. (17), we expect v(y, ¢) to increase in time. The increase is slowed down
by the hydraulic resistance throughout the region 0 < y < y, . However v is not
constant for a given time. There is an increase in velocity near y, . Fig. 9 shows the

results after 1000 minutes, when we used /, = .1 and « = —.0001. The height % of
400
£=1000 min
2 —
350~
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I
o
& sl
¥
00}
s
50—
ol o ! A .l
0 30 60 90 120 150

DISTANCE IN UNITS OF 10° FEET

FiG. 9. “Stationary” state after 1000 minutes. The arrow indicates the initial location of
the front.
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the cold layer has not changed appreciably from its initial value. The velocity v has
a small positive value, except for a short range of y near y, where v reaches a
maximum value, vmax , of about 24 ft/sec. Through a series of calculations with
different values of « we found that, as expected, vyax decreases with increasing
resistance coefficient | « |. However, we noted that the ratio of vy (t)/v(0, £}
increases with increasing | « |.

b. InFLow oF COLD AIR FROM THE NORTH
Next we treated the case with the initial conditions (14)-(16), but with cold air
coming in periodically from the north, that is,
2t 1

o¥, 1) = V, [cos e (48)

The motion in 0 << y <C Y'is found to be stable for various values of the amplitude
V, and the period T considered.

400 —
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3501 {
} =202 min
0k
300 |
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s |4 /
I
lg 200+ E
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=
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% f7)= J } 14
o]
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00—
ol \
50}~
ol -2k Ny 1 i ! i
0 30 60 7] 20 50

DISTANCE IN UNITS OF 10° FEET

FiG. 10. Oscillatory inflow of cold air at north with period 7 = 100 min, amplitude
Vy =10 ft/sec. k and v after 202 minutes. The arrow indicates the initial location of the front.
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Fic. 11. Oscillatory inflow of cold air at north with period T = 100 min, amplitude
¥, = 10 ftfsec. # and v after 2602 minutes. The arrow indicates the initial location of the front.

Figs. 10 and 11 show the motion in the case ¥, = 10 ft/sec and T = 100 min.
Fig. 10 exhibits the oscillations in height and velocity that have developed after 202
minutes. Fig. 11 shows that after 2602 minutes the front has moved to the south,
and the maximum height has increased. The velocity oscillates around a negative
mean value, owing to the net cold air flux coming in from the north. The disturbance
wavelets propagate at an average velocity of about 170 ft/sec (which is in agreement
with the “characteristic” speed), while the front moves at a rate of 6 ft/sec. The
speed of propagation of the front is rather slow and will be discussed further sub-
sequently. .

Increasing the maximum velocity of cold air coming in at the north, increases
the amplitude of oscillation, the growth of maximum height of the wedge, the speed
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of propagation of the front and the average velocity in the cold air. Fig. 12 shows
the results for ¥, = 50 ft/sec, after 2002 minutes have elapsed.
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F16. 12. Oscillatory inflow of cold air at north with period T = 100 min, amplitnde
Vp = 50 ft/sec. h and v after 2002 minutes. The arrow indicates the initial location of the front.

Upon decreasing the period of the cold air inflow to 77 = 10 min, we find that the
velocity inside the cold wedge (except for a small interval at the north) does not
follow the input velocity oscillations, and the depth of the wedge is found also to
respond only slightly. Fig. 13 shows the result for ¥, == 10 ft/sec, after 202 minutes.
Fig. 14 shows the result for the larger velocity maximum, ¥, = 50 ft/sec, after 2402
minutes. In the latter case the values of v and 4 are comparable to the mean values
{over one oscillation) of the values of velocity and depth which arise from the inflow
of longer period, shown in Fig. 12.
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FiG. 13. Oscillatory inflow of cold air at north with period 7 = 10 min, amplitude
V, = 10 ft/sec. & and v after 202 minutes. The arrow indicates the initial location of the front.

Next, we consider a different time-variation of the inflow of cold air from the
north, given by

t < 3T

o=

Ve [cos g—:T—t - 1]

WY, £) = 0
—2¥, 1T

(49)
t

NN

i.e., a gradual increase in absolute value of velocity up to its maximum value 2V, ,
which is then maintained at this fixed rate. Results were for ¥, = 10 and 50 ft/sec,
and for T = 100, 10 and 1 minute. In all cases the front is found to gradually
steepen and progress southward.

Figs. 15 and 16 are for V,, = 10 ft/sec, T = 10 min and o = —.001. They show
the velocity and height after 402 and 2402 minutes respectively. We notice the
steepening of /4 in Fig. 15, in the vicinity of y = 115 units, which represents the
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Oscillatory inflow of cold air at north with period 7 = 10 min, aroplitude

V, = 50 fi/sec. h and v after 2402 minutes. The arrow indicates the initial location of the front.

wave motion created by the build upof mffow from tie worth T Fig, (6 fromt-
has moved a greater distance than has the front in Fig. 11 (at a slightly later time).
Clearly this difference is due to the fact that in Fig. 16 the steady inflow of cold air
has velocity —2V,,, while for Fig. 11 the mean inflow velocity is only —7,, . For
the very fast initial increase of velocity given by taking T = 1 min, we find that
there is no appreciable difference in the resulting flow after 402 minutes. Prior to
402 minutes there is no noticeable irregularity due to the rapid increase of o(¥, £},

9. ResuLts FOR THE Two LAYER MopeL oF FroNTAL MOTION

The results were obtained by using the finite difference scheme (40)-(43) with
the same constants as for the single layer model, except for 4r which had to be



88 ‘ ALTERMAN AND ISAACSON

400
_ . h
2 t=402min
3501~
or
3001~
&
Ty
% B0 o oF v
%]
L N
S 1
o
o 200 »
s S
>
=
= ol
B~
T | ok
g
100 |-
_.30 —
50
oL 9L | ! !

!
0 30 60 90 120 50
DISTANCE IN UNITS OF 10° FEET-

Fic. 15. Constant inflow of cold air, after the rise time 772, with T = 10 min, amplitude
¥V, = 10 ft/sec. The arrow indicates the initial location of the front.

reduced in order to ensure numerical stability. We chose 4¢ = 15 sec so that
A = At/As = .0003 sec/ft. The height of the upper surface of the warm air at the
north side was taken to be #'(Y, 0) = 3h(Y, 0) at the initial time ¢ = 0. That is, the
total height of air at the north side was initially 3 times the maximum depth of the
cold air layer. The total height is smallest at the north side and increases towards
the south. The resistance coefficient is chosen in different cases to be in the range
—102?2 < o << —10~%and 4, = .01.

a. “STATIONARY” STATE

We considered first the “almost stationary” state given by (11)—-(16) without any
addition of cold air from the north. The differential equations with « = 0 show that
initially the flow is not in “‘equilibrium’ only in the shallow cold layer. We would
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Fig. 16, Constant inflow of cold air, after the rise time 7/2, with T = 10 min, amplitude
¥, = 10 ft/sec. The arrow indicates the initial location of the front.

therefore expect very little motion to result. Fig. 17 shows the model after 1600
time-steps, i.e. after 400 minutes. The depth of cold air Ay, ¢) is hardly changed
from its initial value. Fig. 18 shows the total height A'(y, t) and the velocity
w(y, t) in the warm air at about the same time. Here also 4’ is almost exactly at its
initial value given by Egs. (11)~(16). The velocity w(y, ¢) has changed a bit from
its initial value w = 0. In Fig. 17 we see that the velocity in the cold air layer is
practically zero north of the front. Also we note that v(y, ¢} is essentially zero onto
the south of the front owing to the effect of the resistance term. It is only in the
immediate vicinity of the front that the resistance term does not reduce the velocity
to zero. The velocity curve is similar to the one in Fig. 9 for the single layer case. A
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Fic. 17. Height % and velocity v of cold air for the “stationary” state in the two-layered
model. The arrow indicates the initial location of the front.

comparison of the “stationary” states at different times and for various values of a,
—10% < o << —10-% and several values of .01 < A, < .054(Y, 0) shows that the
variation of v(y, t) between the single layer model and the two layer model is
slight. The effect of varying the height of the warm air up to 2(¥, 0) = 10A(Y, 0) is
also slight in the present case of equilibrium initial and boundary conditions.

This simple case shows that the numerical procedure can be applied for a
prolonged period. It is used in the next section for a study of the motion of the
front when cold air comes in from the north side.

b. INnFLOW OF COLD AIR FROM THE NORTH

The boundary conditions of the problem are now changed so as to allow for a
periodic variation of the velocity of the cold air, v(7, ), at the north. v(¥, ¢)is given
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Fic. 18. Total height # and velocity of warm air w, for the “stationary” state in the two-
layered model. The arrow indicates the initial location of the front.

as in Eq. (48). Two kinds of boundary conditions for the velocity of the warm air,
w(Y, ¢}, have been used:

(i) A “free” boundary condition in which w is obtained by linear extrapolation
from values inside the region,

(ii) the condition of no flow,
w(Y,t) =0, t > 0. {50)

The difference in v, &, A’ between the two cases is negligible. The warm air velocity
w(y, £) is smaller in magnitude throughout the region y, << y < Y, when condition
(50) is applied rather than the free condition.

Let us consider first the case when the period of oscillation is 77 = 10 min and
the amplitude is given by ¥V, = 10 ft/sec. The constants in the equations are the
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same as those used in the equilibrium case. Fig. 19 shows v and / after 12.5 minutes.
The oscillations in velocity have propagated 15 x 10° feet, so that their phase
velocity c¢ is approximately 2000 ft/sec.
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Fic. 19, Oscillatory inflow of cold air with period T = 10 min, amplitude ¥V, = 10 ft/sec,
in a two layer model. /# and v after 12.5 minutes. :

This value is larger than the speed of propagation of disturbances (called
“sound speed”) in the single layer model of the cold air, but is approximately the
sound speed for a single fluid layer of depth about 30 km. In this calculation the
initial maximum height of the cold air as given by (11)(16) was #(Y, 0) = A, =
10 km while #'(Y, 0) = 30 km, since the ratio of densitics was p'/p =
31.5521/32.1521 (as assumed in Section 8). If the value of p'/p is decreased, we find
that the maximum 4, at time # = O decreases and also the phase velocity, ¢,
decreases. With all parameters as in Fig. 19, except that p’/p = 30.1521/32.1521,
the phase velocity decreases to ¢ = 1333 ft/sec and the height to 4,, = 4.6 km.
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Fig. 20 shows the results after 12.5 minutes, when p’/p = 30.1521/32.1521. For
p'/p = 29.1521/32.1521 we find ¢ = 800 ft/sec and k,, = 2.2 km.
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Fic. 20.. Oscillatory inflow of cold air with period 7 = 10 min, amplitude V, = 10 ft/sec,
o'lp = 30.1521/32.1521, in a two layer model. # and v after 12.5 minutes.

‘“When p'/p = 31.5521/32.1521 and the period of oscillation is 7 = 10 min, the
velocity is seen to respond with oscillations. As seen in Fig. 13, for the correspond-
ing single layer case, the cold air does not follow the oscillations of the inflow.
But when the period of the inflow is decreased to 7" = 1 min, we find no oscillations
are discernible in the velocity profile for the two layer case as well as the one layer
case.

On the other hand, the curves A(y, t) in Figs, 19 and 20 do not have any oscilla-
tions. This differs from the results for the single layer model, where we find oscilla-
tions in A(y, t) (For fixed ) whenever oscillations in v {as a function of y) occur.
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Fic. 21. Oscillatory inflow of cold air with period T = 10 min, amplitude ¥, = 10 ft/sec,
o’fp = 30.1521/32.1521, in a two layer model. #" and w after 12.5 minutes.

Fig. 21 for p'/p = 30.1521/32.1521 shows the effect on the upper layer of warm air:
w(y, t) oscillates while A'(y, 1), like A(y, t), shows no oscillation and the slopes of
kand ¥ stay essentially at their initial values. Fig. 22 shows v and 4 at a later time.
Fig. 23, for ¥V, = 50 ft/sec, T = 100 min p’/p = 31.5521/32.1521 at time ¢ = 250
min, shows oscillations both in v and in 4. This behavior is similar to that seen in
Fig. 10 for a single layer. Decreasing p’/p decreases the amplitude of oscillation at
y < Y after a prolonged time (¢ > 100 min) and the velocity distribution ©(y, ¢)
comes closer to that of the corresponding single layer case.

We found that increasing the initial total height at the north, Hr = #'(Y, 0), by
a factor B, would increase the phase velocity of the oscillatory disturbance, ¢, by
the factor /.

The influence of varying the coefficient of resistance in the range
—10—2 < o < —10-% is negligible.
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FiG. 22. Oscillatory inflow of cold air with period 7' = 10 min, amplitude ¥, = 10 ft/sec,
in a two layer model. & and » after 300 minutes.

‘A comparison of results for several additional values of p’, shows that decreasing
the density p’, decreases the speed of propagation ¢, and the velocity of the front,

In conclusion, we find that the two models differ in the effect of the oscillations
on h(y, t) and on the numerical values of ¢ and of the velocity of the front. As a
result, there is also a shift in the range of periods T of the input function (Y, ),
for which v(y, #)is an oscillatory function of y. Such differences in wave propagation
properties of multilayered flow problems have been observed (e.g. see [91).
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Fic. 23. Oscillatory inflow of cold air with period T = 100 min, amplitude ¥, = 50 ft/sec,
in a two layer model. k and » after 250 minutes.
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